Exercise 2.2.11

(Analytical solution for charging capacitor) Obtain the analytical solution of the initial value problem

$$
\dot{Q}=\frac{V_{0}}{R}-\frac{Q}{R C}
$$

with $Q(0)=0$, which arose in Example 2.2.2.

Solution

Here the aim is to solve the following initial value problem.

$$
\frac{d Q}{d t}=\frac{V_{0}}{R}-\frac{Q}{R C}, \quad Q(0)=0
$$

Start by rewriting the right side.

$$
\frac{d Q}{d t}=-\frac{Q-C V_{0}}{R C}
$$

Solve this ODE by separating variables and integrating both sides.

$$
\begin{align*}
\frac{d Q}{Q-C V_{0}} & =-\frac{d t}{R C} \\
\int \frac{d Q}{Q-C V_{0}} & =\int-\frac{d t}{R C} \\
\ln \left|Q-C V_{0}\right| & =-\frac{t}{R C}+D \tag{1}
\end{align*}
$$

Apply the initial condition now to determine D.

$$
\ln \left|0-C V_{0}\right|=D=\ln \left|C V_{0}\right|
$$

As a result, equation (1) becomes

$$
\ln \left|Q-C V_{0}\right|=-\frac{t}{R C}+\ln \left|C V_{0}\right|
$$

Bring the logarithms to the left side and combine them.

$$
\ln \left|\frac{Q-C V_{0}}{C V_{0}}\right|=-\frac{t}{R C}
$$

Exponentiate both sides.

$$
\left|\frac{Q-C V_{0}}{C V_{0}}\right|=e^{-t / R C}
$$

Remove the absolute value sign by placing \pm on the right side.

$$
\frac{Q-C V_{0}}{C V_{0}}= \pm e^{-t / R C}
$$

Choose the minus sign so that when $Q=0$ and $t=0$, the equation is a true statement.

$$
\frac{Q-C V_{0}}{C V_{0}}=-e^{-t / R C}
$$

Therefore, solving for Q,

$$
Q(t)=C V_{0}\left(1-e^{-t / R C}\right) .
$$

